If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-15x-16=0
a = 49; b = -15; c = -16;
Δ = b2-4ac
Δ = -152-4·49·(-16)
Δ = 3361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{3361}}{2*49}=\frac{15-\sqrt{3361}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{3361}}{2*49}=\frac{15+\sqrt{3361}}{98} $
| 2x+10=12+3x | | 2(4x+6)+2=38 | | 4z+8=8z | | 24=-5(c+1)-6 | | v=10.64/1.1 | | 5/6=1/3+b | | -3(y-10)+18=24 | | x=21+x=21=2 | | -2f-17f=-10f+9 | | 1-f=5 | | 2(x+5)=6(2+1/2x) | | -2=-8+y/2 | | -2=5(p-8)-12 | | 7=7(q+6) | | 4h-7=3+5h | | 4x=-12+4x | | 1/7a+283=a | | -1=u+6/6 | | -3d=-4d-6 | | 72=-r+7r | | -5k+9=-3k-7 | | f(-8)=I-8-1I | | 15+3t=45 | | -22=2a+9a | | -8g-9=-10g+7 | | -2=a+2/3 | | p-$14.50=53 | | 3(3x-1)+2=3(-3x+1)-4 | | 2x+23=0 | | -4+3z=2z | | -18=2(v+1) | | 6x-15=2x+12+3x |